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Abstract

In 2002, Abe, Ohkubo, and Suzuki developed a new type of ring signature based on the

discrete logarithm problem, which used a novel commitment structure to gain significant savings

in size and verification time for ring signatures[AOS02].

Ring signatures are signatures using n verification keys which require knowledge of one of

the corresponding secret keys. They can therefore be considered a signature of a disjunctive

statement “I know x1 OR I know x2 OR . . . ”. We generalise their construction to handle

conjunctive statements “I know one of {x1,x2,x3, . . .} AND one of {x4,x5,x6, . . .} AND . . . ”

and thereby gain the ability to express knowledge of any monotone boolean function of the

signing keys.

This can be trivially done by use of multiple independent ring signatures; our construction

saves space relative to this by sharing commitments across the individual rings.

We also describe a new way of thinking about these ring signatures, and ordinary Schnorr

signatures, in terms of “causal loops” which may provide a framework for further generalisations.

∗This work was sponsored by Blockstream.
†greg@xiph.org, apoelstra@wpsoftware.net
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License. This work is released into the public domain.

1 Random oracles and Schnorr signatures

Throughout we assume we are working in a cyclic additive group G for which the discrete logarithm
problem is hard, and that G is some fixed known generator of the group.

1.1 Schnorr authentication

Consider the following interactive authentication protocol, developed by Claus Schnorr in
1989[Sch89], which allows the possessor of a secret discrete logarithm x of a public group element
P = xG to prove knowledge of x without revealing anything about it:

1. The prover chooses a random scalar k and submits kG to the verifier.

2. The verifier responds with a random challenge scalar e.

3. The prover replies with the scalar s← k+ xe.10

The verifier does not know k, since the discrete logarithm problem is hard, but can check that s was
computed honestly because s = k+ xe is equivalent to sG = kG+ exG and the verifier knows each
of s, e, kG and xG.

Intuitively, this is zero knowledge because if the verifier had slipped the prover pre-knowledge
of what e would be, the prover could have produced a legitimate s without knowing x at all.
(Specifically, she would choose s randomly and then choose “kG” as sG− exG.) The transcript of
the prover/verifier interactions in this case would be statistically indistinguishable from a transcript
in the honest game; thus if the dishonest game revealed nothing about x (and it did not; it did not
even use x!) then neither did the honest one.

Intuitively, it proves that the prover knows x, since e was chosen uniformly at random. If she20

could win no matter what e was, then it is a simple matter to “fork” her and give each fork different
e values, say e1 and e2. Then the two forks would produce s1 = k+ xe1 and s2 = k+ xe2, which
expose x as x = (s1− s2)/(e1− e2). In other words, a verifier that can win regardless of e can be
used to extract the value of x, and therefore she must have knowledge of it.

1.2 Random oracles and Fiat-Shamir

The above scheme is not publicly verifiable, for exactly the same reason that it is zero-knowledge.
That is, a transcript of the interaction between the prover and verifier is indistinguishable from one
in which they were colluding to avoid anybody knowing x. Therefore, in the honest game, the
prover proves knowledge of x to the verifier, but not to anybody else.

Fortunately, since the verifier has no purpose except to produce random values in response to30

challenges, it has a very simple mathematical description: that of a random function. Random
functions are mathematical functions which return independent uniformly random values on each
input. “Evaluating” such a function is functionally equivalent to submitting a challenge value and
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receiving a new random value on each new input. Therefore random functions are often referred to
as random oracles.

Random functions have infinite Kolmogorov complexity and cannot be instantiated in a
machine, but we replace them by simple functions called hash functions for which there is no known
way to distinguish them from random. This gives us the so-called random oracle model[BR93], in
which we effectively have a challenger who exists in the world of Platonic forms[Ros51], and whom
we refer to as a random oracle.40

Random oracles have two benefits over traditional challengers: (a) the oracle’s behaviour is
publicly verifiable and can be seen not to be behaving dishonestly, so by “proving to the oracle”
knowledge of a discrete logarithm, one actually proves this knowledge to everyone; (b) the oracle
is modelled by a hash function which can be computed by anyone to recreate the transcript of
interaction, so there is no need for any actual interaction.

The idea of replacing an actual challenger with a random oracle is known as the Fiat-Shamir

transform[FS86] after the first to use the idea to turn an interactive scheme into a non-interactive
publicly verifiable one. Applying the Fiat-Shamir transform to the above interactive scheme gets us
the Schnorr signature scheme which works as follows:

1. The prover chooses a random scalar k and computes e = H(kG).50

2. The prover computes the scalar s← k+ xe and publishes (s,e).

Since H returns a different e for different inputs, it is possible to add things to its input; for example,
computing H(m‖kG) for some message m. The result is a transcript containing m for which m

cannot be changed without knowledge of x. This is thus a “signature of knowledge” on m.
Anyone can verify the signature’s veracity by first computing kG = sG− eP and checking that

this is actually the committed value; i.e., that e ?
= H(kG). The fact that P = xG is used in the

verification is what ties this signature to x.

2 Ring signatures

2.1 Time travel and chameleon hashes

The critical ingredient of the above authentication scheme is the time ordering. We observed that60

if the prover could see into the future and determine e before choosing kG, she could successfully
authenticate without knowing x.

In the random oracle model, there is no more interaction and therefore no more time. However,
the random oracle H provides its own time ordering: since for any input y it is impossible to know
H(y) without evaluating it (except by guessing it, which succeeds with only negligible probability),
we can say that H(y) is determined “after” y. We therefore preserve the idea of time being essential,
though our definition of time has changed.

This definition of time admits a cryptographic trick to allow the possessor of some secret
knowledge to reverse it. The way this works is to tweak our hash function H to make it a chameleon

hash[KR97]. A chameleon hash, rather than taking just an input e, also takes as input a random70
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value s. A possessor of some secret “trapdoor” information will be able to tweak s so as to change
e without changing the hash output, while ordinary mortals remain bound by the laws of time: once
the hash of e is computed, e is in the past and cannot be changed any more than you can choose not
to have read this sentence.

We define a chameleon hash from an ordinary hash H as follows. Here G and P are generators
of the group; the trapdoor information is x such that P = xG. Our hash function is

H ′(m,e,s) = H(m‖sG− eP)

(This is actually a “half-chameleon hash”: someone with trapdoor information can change the value
of e by changing s appropriately1, but nobody can change m without changing the output of the hash
function.)

We notice that if s = k+xe, which is the value s from a Schnorr signature, then e = H ′(m,e,s) =80

H(m‖kG) can be computed without foreknowledge of e. We can therefore describe Schnorr
signatures as a pair (s,e) where e is both the input and output of a chameleon hash and s is its
random input. Since the output of the hash is random and independent of its input, forcing the input
to be equal to the output requires trapdoor information, and is thus a proof that the signer has this
information. The result is called a signature of knowledge.

In other words, we can think of Schnorr signatures as working as follows: to produce a Schnorr
signature without knowing the secret key x, one must predict the output of random oracle H,
effectively “travelling backward in time”. The signature is structured to essentially contain a hash
of itself, creating a causal loop and forcing signers to know the trapdoor information.

In the next section we will generalise these causal loops and see that they are a useful abstraction.90

2.2 Abe-Ohkubo-Suzuki ring signatures

Ring signatures are a variant of digital signatures in which the verification key is replaced by a set,
or ring, of verification keys. Each verification key has a corresponding secret key, and only one
is required to produce a ring signature. However, all of the verification keys play the same role in
verifying the signature, so the specific signing key used remains secret.

Ring signatures were introduced by Rivest, Shamir, and Tauman[RST01] in 2001. Their
suggested use-case was whistleblowing: a well-connected signer could construct a ring with the
verification keys of other well-connected parties, then sign a message blowing the lid off some
conspiracy. Verifiers would see that somebody well-connected had signed off on the leak, giving
it veracity, but they would not know who specifically had done it, preventing nasty personal100

consequences.
In 2002, Abe, Ohkubo, and Suzuki developed a new type of ring signature based on the discrete

logarithm problem[AOS02], which used causal loops (though they did not use the term) to obtain
the ring property. This use of causal loops gave a significant (50%) reduction in the size of the
signatures compared to earlier ring signatures. It is described as follows.

1Specifically, if h = H ′(m,e,s), then to change e to e′ one sets s′ ← s+ (e− e′)x, so s′G− e′P = sG− eP and thus
H ′(m,e′,s′) = H(m,e,s).
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AOS Signatures (1 of 3)Schnorr Signature (1 of 1)

Figure 1: Schnorr as a special-cased AOS signature

In this scheme, rather than having kG = sG+ exG committed to by e, we have a set of hashes
{ei}n−1

i=0 , each committing to kiG = siG+ eiPi, where the indices are considered modulo n. Since
each ei commits to the si−1 before it, it is easy to produce values for kiG — just choose si at random
and compute the resulting kiG and ei! The signer can do this starting with any index j: first compute
e j as the hash of some random k jG, then using this compute (s j+1,e j+1), then (s j+2,e j+2), and so110

on until reaching (s j,e j).
However, when computing (s j,e j), the signer finds that e j has already been determined (this was

the first step). He must somehow compute s j to fit. Just like with the ordinary Schnorr signature, to
do this requires “going back in time” to choose an s j value compatible with e j, and just like with
the ordinary Schnorr signature, this can be done as long as the signer knows the discrete logarithm
x j of Pj: set s j = k j− x je j. The final signature is σ = {e0,s0,s1, . . . ,sn−1}.

Since s j contains the random value k j, it appears uniformly random, just like every other si,
and from the perspective of the verifier, there is nothing special about the index j. The result is a
signature which requires many verification keys to verify, only one of whose secret key is required
to produce. This is a ring signature!120

This has been very algebraic. We can extract the structure of the commitments to see what is
“really” going on with these ring signatures. We do this by drawing them as directed graphs. The
vertices of the graph are labelled by the chameleon hash output; the incoming edges by their blinded
input. (As in the Schnorr case, the blinding either forces the value of the edge’s source vertex or
requires some secret knowledge; the difference is that in the Schnorr case there is only one edge
whose source and target vertices are the same.)
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In other words: as before, we have a notion of time which mandates nothing more than that a
hash e can only be known after its input is decided. And as before, we can use chameleon hashes
to override this time-ordering (only) for people in possession of trapdoor information. We can draw
this time-ordering as a directed graph, and make two observations:130

1. To form a cycle, it is necessary and sufficient to “go back in time” for one commitment; that
is, only one secret key is required.

2. From the perspective of a verifier, a reversed-time commitment is indistinguishable from
an ordinary one. Further, he can only see the graph structure: the colouring and up/down
distinction we have used in our illustrations is invisible.

These two observations together describe how the Abe-Ohkubo-Suzuki ring signature works: it is
simply a cycle of chameleon-hash commitments2.

3 Borromean ring signatures

With this background in place, the concept of Borromean ring signatures can be described as a
straightforward generalisation. Where ordinary ring signatures take a set of verification keys {vi}n

i=1140

and describe a signature signed with s1 OR s2 OR · · · OR sn, where si is the secret key corresponding
to vi, Borromean ring signatures can describe signatures signed with arbitrary functions of the
signing keys.

More formally, let V be some set of verification keys, and f be a function which maps finite
subsets of V to {0,1}. We call f an admissibility function; then an admissible set V of verification
keys is one for which f (V ) = 1.

A Borromean ring signature σ is a signature on a message m with a set V of verification keys
and admissibility function f which satisfy the following:

1. σ can be produced only by parties who together know all the secret keys to an admissible set
V of verification keys.150

2. Given only σ , V , and m, it is statistically indistinguishable which admissible set V was used.

3.1 Monotone functions

We observe that if V is an admissible set, without loss we may also assume that any superset V ′ is
also admissible. The reason is that if V is admissible, then parties holding the signing keys to V ′

are able to produce valid signatures by simply ignoring the keys in V ′ that are not in V . We can
therefore put the following restriction on f : if f (V ) = 1, then for all V ′ ⊇V , f (V ′) = 1. Functions
which satisfy this restriction are called monotone functions.

2As before, we use half-chameleon hashes; each ei commits to the previous ei−1 in a time-reversible way but commits to
the message and verification key set in an irreversible way, since these should not be tamperable.
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3.2 AND and OR

It can be shown[BL88] that monotone functions are exactly those that can be represented by circuits
in disjunctive normal form which have no negations; i.e., circuits of the form160

∧
i

(∨
j

ai, j

)

where
∧

or AND outputs 1 iff all its inputs are 1;
∨

or OR outputs 0 iff all its inputs are 0.
We observe that Abe-Ohkubo-Suzuki signatures can be described as Borromean ring signatures

whose admissibility function f consists of a single OR gate. We observe more generally that we
can construct OR gates out of cycles, as described in an earlier section.

To take the conjunction of these OR gates, it is sufficient to simply create disjoint graphs,
which would each correspond to a single AOS signature. However, we can do better than this
by creating a new graph structure corresponding to the AND gate. Specifically, if we create a vertex
e with multiple outgoing edges (meaning multiple s values which individually either require secret
knowledge or force the value of e), then we have constructed an AND without requiring multiple
graphs.170

It is easy to see how a signature can be structured so that its graph has vertices with multiple
outgoing edges: each edge i from a vertex labelled (e,x) is labelled by a si value which is either
random (for forward-time edges) or equal to si = ki− xe (for backward-time edges). However, to
force backward-time edges, we need to have every path be part of a cycle. This forces us to also
have vertices with multiple incoming edges (see vertex e0 in Figure 2). This means we need to
change our commitment structure.

Recall that for a vertex (e, ·) with a single incoming edge s (whose source vertex is (e′,x′)), the
value e is computed by chameleon hash as

e = H(m‖sG− e′x′G)

If we have multiple incoming edges {si}n
i=1 whose source vertices are {(ei,xi)}n

i=1, the
generalisation is obvious:180

e = H(m‖s1G− e1x1G‖· · ·‖snG− enxnG)

The result is a “multiply-chameleon hash”: each xi is a piece of trapdoor information which can
be used independently to make its corresponding edge si go backward in time. This is exactly the
structure we would expect from a vertex in our graph with multiple incoming arrows.
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With these pieces in place, we are able to draw a graph describing a Borromean signature:

e0

e1

e2

e3

e4

(s′0,P
′
0)

(s3,P3)

(s4,P4)

(s0,P0)

(s1,P1)

(s2,P2)

Figure 2: A Borromean ring signature for (P0|P1|P2)&(P′0|P3|P4)

Though it would result in a more crowded picture, it is clear how this scales to more than two
rings; the resulting signature is one that can only be created by knowing the discrete logarithms of
one of {P0,P1,P2} and {P′0,P3,P4}, and we saved one commitment versus having separate rings.

In general, if we take the conjunction of n rings, we save (n− 1) commitments versus using
separate ring signatures.

3.3 Concrete algorithm190

The above has given a description of Borromean ring signatures in terms of graph structures, and
technically has all the information required to implement them. However, the devil is in the details,
and it is not obvious that it is actually possible to compute these signatures. We therefore lay out
the actual signing and verification algorithms.

3.3.1 Signing

Suppose a signer has a collection of verification keys Pi, j for 0 ≤ i ≤ n− 1, 0 ≤ j ≤ mi− 1, and
wants to create a signature of knowledge of the n keys {Pi, j∗i

}n−1
i=0 where the j∗i ’s are some fixed and

unknown (to a verifier) indices. Denote the secret key to Pi, j∗i
by xi. He acts as follows:

1. Compute M as the hash of the message to be signed and the set of verification keys.

2. For each 0≤ i≤ n−1:200

(a) Choose a scalar ki uniformly at random.

(b) Set ei, j∗i +1 = H(M‖kiG‖i‖ j∗i ).

(c) For j such that j∗i ≤ j < mi−1 choose si, j at random and compute

ei, j+1 = H(M‖si, jG− ei, jPi, j‖i‖ j).
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3. Choose si,n j for each i at random and set

e0 = H(si,m j G− ei,m j Pi, j‖· · ·‖sn,m j G− en,m j Pi, j)

That is, e0 commits to several s-values, one from each ring.

4. For each 0≤ i≤ n−1:

(a) For j such that 0≤ j < j∗i −1 choose si, j at random and compute

ei, j+1 = H(M‖si, jG− ei, jPi, j‖i‖ j).

where “ei,0” means e0. Note that this calculation is identical to the one in Step 2c.

(b) Set si, j∗i
= ki + xiei, j∗i−1

.210

The resulting signature on m consists of

σ = {e0,si, j : 0≤ i≤ n,0≤ j ≤ mi}

3.3.2 Verification

Since verification does not depend on which specific keys are known, it avoids the “two-phase”
structure of signing and is therefore much simpler.

We assume we have a message m, a collection {Pi, j} of verification keys whose indices range
as before, and a signature σ whose notation is the same as before. The verifier acts as follows:

1. Compute M as the hash of the message to be signed and the set of verification keys.

2. For each 0 ≤ i ≤ n− 1, for each 0 ≤ j ≤ m j − 1, compute Ri, j+1 = si, jG + ei, jPi, j and
ei, j+1 = H(M‖Ri, j+1‖i‖ j+1). (As before, we always take ei,0 to be e0.)

3. Compute e′0 = H(R0,m0‖· · ·‖Rn,mn) and return 1 iff e′0
?
= e0.220

3.4 Efficiency comparison

Finally, we compare our scheme to existing ring signatures. We consider signing with N verification
keys across n rings.

Scheme Size of signature
n original CDS ring signatures[CDS94]
(for example, used by Monero)

2N

n AOS ring signatures N +n

1 Borromean ring signature N +1

Here “size” is measured in field elements or hashes, which are 32 bytes for 128-bit security.
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4 Open Problems

In the above, we developed signatures which are proportionate in size to the number of ai, j’s in the
disjunctive normal form expression. ∧

i

(∨
j

ai, j

)
By avoiding disjunctive normal form it is possible to represent these circuits in much less space;
however, it is unclear how the signatures corresponding to such circuits should be structured.230

Similarly, by using threshold gates rather than only AND and OR, a space savings can be
obtained for many monotone functions; it is also open how to translate this to our framework.
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